Vernor Arguedas T |
|
Este segundo artículo lo dedicamos a David Hilbert ( nace el 23 de enero de 1862, muere el 14 de febrero de 1943). La escogencia se basa en lo siguiente: a.) En su libro Grundlagen der Geometrie (17 de junio de 1899) Fundamentos de Geometría. Realiza la tarea titánica de convertir - la obra de Euclides a la |
|
matemática moderna axiomática – de la cual es uno de
los fundadores. Ese libro cambió radicalmente la concepción
del aprendizaje e investigación en geometría euclidiana. En Estados
Unidos de Norteamérica el autor
Edwin Moise escribió su clásico Elementary Geometry From An Advanced
Standpoint ( tiene varias traducciones al castellano) .El
cual se puede ubicar comouna adaptación al inglés y en sencillo del
libro de David Hilbert. Algunos profesores en la Universidad de Costa
Rica usamos el texto de Moise en nuestros cursos de geometría.
Si alguien lee los
13 libros de Euclides descubre que su lenguaje y técnicas de
demostración no corresponden a los conceptos actuales. En el léxico
común se han quedado algunas frases de los elementos de Euclides que
muestran los problemas mencionados : la distancia más corta entre dos
puntos es la línea recta (en esa frase tan corta hay al menos 5
errores graves en el uso del lenguaje y conceptos
matemáticos), el orden de
los factores no altera el producto... si la multiplicación es
conmutativa. Todo estudiante en el primer curso de álgebra lineal
aprende que la multiplicación de matrices no es conmutativa en
general. Hace unos 42 años. Dieudonné uno de los fundadores de
la Escuela de Bourbaki al finalizar la segunda guerra mundial
fue más lejos y levantó la controversial bandera:
“ Afuera Euclides”.
Un trabajo muy interesante se encuentra en la red:
http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
en esta página se pueden revisar los contenidos de los 13
libros de Euclides y por medio de pequeños programas en Java y
JavaScript se pueden apreciar las construcciones y como estas
constituyen el concepto de demostración en Euclides..
b) En
el Congreso Mundial de Matemáticos en Paris en 1900 Hilbert presentó
una serie de conjeturas y problemas que se convirtieron en los famosímos
23 problemas de Hilbert. Su influencia en el desarrollo de las
ciencias matemáticas en el Siglo XX
fue total y posiblemente también en el XXI. Muchos matemáticos
han ganado la medalla Fields (En honor al matemático canadiense .
C. Fields)
por sus respuestas en afirmativo o en negativo a alguno de los
23 problemas.: Andrew Wiles(1998) por la solución al problema de
Fermat ha sido el último . En la dirección http://elib.zib.de/IMU/medals/
se puede encontrar la lista de todos los ganadores de la
medalla Fields..A la pregunta como investigan los matemáticos surge
la respuesta por medio de conjeturas y problemas que se le
plantean .En el caso de Hilbert él
contribuyó de manera notable al plantear problemas y conjeturas en
muchos campos del quehacer matemático . A uno de los problemas el
joven Goedel dió una respuesta negativa y eso va ser el tema de
nuestro tercer artículo : Goedel y el Círculo de Viena Ahora
dejemos a Hilbert contar sus
23 problemas: Mathematical Problems
Lecture delivered before the International Congress of Mathematicians at
Paris in 1900
By Professor David Hilbert1
Who of us would not
be glad to lift the veil behind which the future lies hidden; to cast a
glance at the next advances of our science and at the secrets of its
development during future centuries? What particular goals will there be
toward which the leading mathematical spirits of coming generations will
strive? What new methods and new facts in the wide and rich field of
mathematical thought will the new centuries disclose? History teaches the
continuity of the development of science. We know that every age has its
own problems, which the following age either solves or casts aside as
profitless and replaces by new ones. If we would obtain an idea of the
probable development of mathematical knowledge in the immediate future,
we must let the unsettled questions pass before our minds and look over
the problems which the science of today sets and whose solution we expect
from the future. To such a review of problems the present day, lying at
the meeting of the centuries, seems to me well adapted. For the close of
a great epoch not only invites us to look back into the past but also
directs our thoughts to the unknown future. The deep
significance of certain problems for the advance of mathematical science
in general and the important role which they play in the work of the
individual investigator are not to be denied. As long as a branch of
science offers an abundance of problems, so long is it alive; a lack of
problems foreshadows extinction or the cessation of independent
development. Just as every human undertaking pursues certain objects, so
also mathematical research requires its problems. It is by the solution
of problems that the investigator tests the temper of his steel; he finds
new methods and new outlooks, and gains a wider and freer horizon. It is difficult and
often impossible to judge the value of a problem correctly in advance;
for the final award depends upon the gain which science obtains from the
problem. Nevertheless we can ask whether there are general criteria which
mark a good mathematical problem. An old French mathematician said:
"A mathematical theory is not to be considered complete until you
have made it so clear that you can explain it to the first man whom you
meet on the street." This clearness and ease of comprehension, here
insisted on for a mathematical theory, I should still more demand for a
mathematical problem if it is to be perfect; for what is clear and easily
comprehended attracts, the complicated repels us. Moreover a
mathematical problem should be difficult in order to entice us, yet not
completely inaccessible, lest it mock at our efforts. It should be to us
a guide post on the mazy paths to hidden truths, and ultimately a
reminder of our pleasure in the successful solution. The mathematicians
of past centuries were accustomed to devote themselves to the solution of
difficult particular problems with passionate zeal. They knew the value
of difficult problems. I remind you only of the "problem of the line
of quickest descent," proposed by John Bernoulli. Experience teaches,
explains Bernoulli in the public announcement of this problem, that lofty
minds are led to strive for the advance of science by nothing more than
by laying before them difficult and at the same time useful problems, and
he therefore hopes to earn the thanks of the mathematical world by
following the example of men like Mersenne, Pascal, Fermat, Viviani and
others and laying before the distinguished analysts of his time a problem
by which, as a touchstone, they may test the value of their methods and
measure their strength. The calculus of variations owes its origin to
this problem of Bernoulli and to similar problems. Fermat had asserted,
as is well known, that the diophantine equation xn
+ yn = zn (x, y and z
integers) is unsolvable--except in certain self evident cases. The
attempt to prove this impossibility offers a striking example of the
inspiring effect which such a very special and apparently unimportant
problem may have upon science. For Kummer, incited by Fermat's problem,
was led to the introduction of ideal numbers and to the discovery of the
law of the unique decomposition of the numbers of a circular field into
ideal prime factors--a law which today, in its generalization to any
algebraic field by Dedekind and Kronecker, stands at the center of the
modern theory of numbers and whose significance extends far beyond the
boundaries of number theory into the realm of algebra and the theory of
functions. To speak of a very
different region of research, I remind you of the problem of three bodies.
The fruitful methods and the far-reaching principles which Poincaré has
brought into celestial mechanics and which are today recognized and
applied in practical astronomy are due to the circumstance that he
undertook to treat anew that difficult problem and to approach nearer a
solution. The two last
mentioned problems--that of Fermat and the problem of the three bodies--seem
to us almost like opposite poles--the former a free invention of pure
reason, belonging to the region of abstract number theory, the latter
forced upon us by astronomy and necessary to an understanding of the
simplest fundamental phenomena of nature. But it often
happens also that the same special problem finds application in the most
unlike branches of mathematical knowledge. So, for example, the problem
of the shortest line plays a chief and historically important part in the
foundations of geometry, in the theory of curved lines and surfaces, in
mechanics and in the calculus of variations. And how convincingly has F.
Klein, in his work on the icosahedron, pictured the significance which
attaches to the problem of the regular polyhedra in elementary geometry,
in group theory, in the theory of equations and in that of linear
differential equations. |
Revista digital Matemática, Educación e Internet. |