1 2 3 4 5 6 7 8 9 10


En ([2],[3],[4],[5]) se calculan algunas de las funciones que volveremos a presentar aquí.

 

Angulo A 
en grados
Angulo A 
en radianes 
sen A cos A tg A cotg A sec A cosec A
0o 0 0 1 0 $ \infty$ 1 $ \infty$
15o $ \pi$/12 $\displaystyle {1\over 4}$$\displaystyle \left(\vphantom{ \sqrt{6}+\sqrt{2} }\right.$$\displaystyle \sqrt{6}$ + $\displaystyle \sqrt{2}$$\displaystyle \left.\vphantom{ \sqrt{6}+\sqrt{2} }\right)$ $\displaystyle {1\over 4}$$\displaystyle \left(\vphantom{ \sqrt{6}+\sqrt{2} }\right.$$\displaystyle \sqrt{6}$ + $\displaystyle \sqrt{2}$$\displaystyle \left.\vphantom{ \sqrt{6}+\sqrt{2} }\right)$ 2 - $ \sqrt{3}$ 2 + $ \sqrt{3}$ $ \sqrt{6}$ - $ \sqrt{2}$ $ \sqrt{6}$ + $ \sqrt{2}$
30o $ \pi$/6 1$ \over$2 $\displaystyle {1\over 2}$$\displaystyle \sqrt{3}$ $\displaystyle {1\over 3}$$\displaystyle \sqrt{3}$ $ \sqrt{3}$ $\displaystyle {2\over 3}$$\displaystyle \sqrt{3}$ 2
45o $ \pi$/4 $\displaystyle {1\over 2}$$\displaystyle \sqrt{2}$ $\displaystyle {1\over 2}$$\displaystyle \sqrt{2}$ 1 1 $ \sqrt{2}$ $ \sqrt{2}$
60o $ \pi$/3 $\displaystyle {1\over 2}$$\displaystyle \sqrt{3}$ 1$ \over$2 $ \sqrt{3}$ $\displaystyle {1\over 3}$$\displaystyle \sqrt{3}$ 2 $\displaystyle {2\over 3}$$\displaystyle \sqrt{3}$
75o 5$ \pi$/12 $\displaystyle {1\over 4}$$\displaystyle \left(\vphantom{ \sqrt{6}+\sqrt{2} }\right.$$\displaystyle \sqrt{6}$ + $\displaystyle \sqrt{2}$$\displaystyle \left.\vphantom{ \sqrt{6}+\sqrt{2} }\right)$ $\displaystyle {1\over 4}$$\displaystyle \left(\vphantom{ \sqrt{6}-\sqrt{2} }\right.$$\displaystyle \sqrt{6}$ - $\displaystyle \sqrt{2}$$\displaystyle \left.\vphantom{ \sqrt{6}-\sqrt{2} }\right)$ 2 + $ \sqrt{3}$ 2 - $ \sqrt{3}$ $ \sqrt{6}$ + $ \sqrt{2}$ $ \sqrt{6}$ - $ \sqrt{2}$
90o $ \pi$/2 1 0 ±$ \infty$ 0 ±$ \infty$ 1

 

 

 

En ([2],[3],[4],[5]) se calculan algunas de las funciones que volveremos a presentar aquí.

 

Angulo A 
en grados
Angulo A 
en radianes 
sen A cos A tg A cotg A sec A cosec A
0o 0 0 1 0 $ \infty$ 1 $ \infty$
15o $ \pi$/12 $\displaystyle {1\over 4}$$\displaystyle \left(\vphantom{ \sqrt{6}+\sqrt{2} }\right.$$\displaystyle \sqrt{6}$ + $\displaystyle \sqrt{2}$$\displaystyle \left.\vphantom{ \sqrt{6}+\sqrt{2} }\right)$ $\displaystyle {1\over 4}$$\displaystyle \left(\vphantom{ \sqrt{6}+\sqrt{2} }\right.$$\displaystyle \sqrt{6}$ + $\displaystyle \sqrt{2}$$\displaystyle \left.\vphantom{ \sqrt{6}+\sqrt{2} }\right)$ 2 - $ \sqrt{3}$ 2 + $ \sqrt{3}$ $ \sqrt{6}$ - $ \sqrt{2}$ $ \sqrt{6}$ + $ \sqrt{2}$
30o $ \pi$/6 1$ \over$2 $\displaystyle {1\over 2}$$\displaystyle \sqrt{3}$ $\displaystyle {1\over 3}$$\displaystyle \sqrt{3}$ $ \sqrt{3}$ $\displaystyle {2\over 3}$$\displaystyle \sqrt{3}$ 2
45o $ \pi$/4 $\displaystyle {1\over 2}$$\displaystyle \sqrt{2}$ $\displaystyle {1\over 2}$$\displaystyle \sqrt{2}$ 1 1 $ \sqrt{2}$ $ \sqrt{2}$
60o $ \pi$/3 $\displaystyle {1\over 2}$$\displaystyle \sqrt{3}$ 1$ \over$2 $ \sqrt{3}$ $\displaystyle {1\over 3}$$\displaystyle \sqrt{3}$ 2 $\displaystyle {2\over 3}$$\displaystyle \sqrt{3}$
75o 5$ \pi$/12 $\displaystyle {1\over 4}$$\displaystyle \left(\vphantom{ \sqrt{6}+\sqrt{2} }\right.$$\displaystyle \sqrt{6}$ + $\displaystyle \sqrt{2}$$\displaystyle \left.\vphantom{ \sqrt{6}+\sqrt{2} }\right)$ $\displaystyle {1\over 4}$$\displaystyle \left(\vphantom{ \sqrt{6}-\sqrt{2} }\right.$$\displaystyle \sqrt{6}$ - $\displaystyle \sqrt{2}$$\displaystyle \left.\vphantom{ \sqrt{6}-\sqrt{2} }\right)$ 2 + $ \sqrt{3}$ 2 - $ \sqrt{3}$ $ \sqrt{6}$ + $ \sqrt{2}$ $ \sqrt{6}$ - $ \sqrt{2}$
90o $ \pi$/2 1 0 ±$ \infty$ 0 ±$ \infty$ 1

1 2 3 4 5 6 7 8 9 10