1 2 3 4 5 6 7 8 9 10

 

5.Cálculo de las funciones seno y coseno de ángulo con  medidas de 21o, 33o, 39o ó 42o.

Utilizando las relaciones:

21o = 36o - 15o
33o = 36o - 3o
39o = 54o - 15o
42o = 60o - 18o

 

Calculamos:

sen 21o = $\displaystyle {\sqrt{2}\over16}$$\displaystyle \left[\vphantom{2\sqrt{10+5\sqrt{3}-2\sqrt{5}-\sqrt{15}}-\sqrt{15}+\sqrt{5}-\sqrt{3}+1}\right.$2$\displaystyle \sqrt{10+5\sqrt{3}-2\sqrt{5}-\sqrt{15}}$ - $\displaystyle \sqrt{15}$ + $\displaystyle \sqrt{5}$ - $\displaystyle \sqrt{3}$ + 1$\displaystyle \left.\vphantom{2\sqrt{10+5\sqrt{3}-2\sqrt{5}-\sqrt{15}}-\sqrt{15}+\sqrt{5}-\sqrt{3}+1}\right]$
     
cos 21o = $\displaystyle {\sqrt{2}\over16}$$\displaystyle \left[\vphantom{2\sqrt{10-5\sqrt{3}-2\sqrt{5}+\sqrt{15}}+\sqrt{15}+\sqrt{5}+\sqrt{3}+1}\right.$2$\displaystyle \sqrt{10-5\sqrt{3}-2\sqrt{5}+\sqrt{15}}$ + $\displaystyle \sqrt{15}$ + $\displaystyle \sqrt{5}$ + $\displaystyle \sqrt{3}$ + 1$\displaystyle \left.\vphantom{2\sqrt{10-5\sqrt{3}-2\sqrt{5}+\sqrt{15}}+\sqrt{15}+\sqrt{5}+\sqrt{3}+1}\right]$
     
sen 33o = $\displaystyle {\sqrt{8+\sqrt{3}+\sqrt{15}+\sqrt{10-2\sqrt{5}}}+\sqrt{24-3\sqrt{15}-3\sqrt{3}-3\sqrt{10-2\sqrt{5}}}\over8}$
     
cos 33o = $\displaystyle {\sqrt{24+3\sqrt{15}+3\sqrt{3}+3\sqrt{10-2\sqrt{5}}}-\sqrt{8-\sqrt{15}-\sqrt{3}-\sqrt{10-2\sqrt{5}}}\over8}$
     
sen 39o = $\displaystyle {\sqrt{2}\over16}$$\displaystyle \left[\vphantom{\sqrt{15}+\sqrt{5}+\sqrt{3}+1-2\sqrt{10-5\sqrt{3}-2\sqrt{5}+\sqrt{15}}}\right.$$\displaystyle \sqrt{15}$ + $\displaystyle \sqrt{5}$ + $\displaystyle \sqrt{3}$ + 1 - 2$\displaystyle \sqrt{10-5\sqrt{3}-2\sqrt{5}+\sqrt{15}}$$\displaystyle \left.\vphantom{\sqrt{15}+\sqrt{5}+\sqrt{3}+1-2\sqrt{10-5\sqrt{3}-2\sqrt{5}+\sqrt{15}}}\right]$
     
cos 39o = $\displaystyle {\sqrt{2}\over16}$$\displaystyle \left[\vphantom{2\sqrt{10+5\sqrt{3}-2\sqrt{5}-\sqrt{15}}+\sqrt{15}-\sqrt{5}+\sqrt{3}-1}\right.$2$\displaystyle \sqrt{10+5\sqrt{3}-2\sqrt{5}-\sqrt{15}}$ + $\displaystyle \sqrt{15}$ - $\displaystyle \sqrt{5}$ + $\displaystyle \sqrt{3}$ - 1$\displaystyle \left.\vphantom{2\sqrt{10+5\sqrt{3}-2\sqrt{5}-\sqrt{15}}+\sqrt{15}-\sqrt{5}+\sqrt{3}-1}\right]$
     
sen 42o = $\displaystyle {1-\sqrt{5}+\sqrt{30+6\sqrt{5}}\over 8}$
     
cos 42o = $\displaystyle {\sqrt{15}-\sqrt{3}+\sqrt{10+2\sqrt{5}}\over 8}$

1 2 3 4 5 6 7 8 9 10